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Abstract 

Kings Covered Bridge over Laurel Creek in Somerset County, Pennsylvania is 
approximately 114-foot clear span multiple Kingpost Truss with nail-laminated 
arches. This timber bridge is historically significant because it retains its original 
features of the 1860’s since the 1930s when it was spared from modernization by the 
construction of an adjacent steel highway bridge for vehicular traffic.  Since that time 
Kings Bridge has a colorful history, including use as livestock barn and a proposed 
new use as a part of a “twin covered bridge” municipal park. Kings Bridge remains a 
museum-quality artifact. The bridge is currently supported by a temporary steel 
queenpost truss system pending full rehabilitation. The rehabilitation strategy for 
Kings Bridge is to minimize interventions, repair in-place, and to replace deteriorated 
members in-kind where possible. This paper documents the rehabilitation of Kings 
Bridge as of November 1, 2004. An updated presentation of the existing timber 
conditions; structural analysis; and final rehabilitation design will be presented at the 
ASCE Structures Congress in April 2005. Rehabilitation construction will begin fall 
2005. The rehabilitation funding for Kings Bridge is 100% federal through the 
National Covered Bridge and the Transportation Enhancements programs.  

Introduction to Kings Bridge 

Background  
The Kings Bridge that exists today was constructed in at least two phases.  The first 
phase was a multiple king post truss that probably dates from the middle of the 
nineteenth century (ca. 1860 or earlier). The arches were likely added to the truss in 
1906. Arnold Graton offers this scenario, 

“The two posts on each corner are circular sawn oak.  The arches were probably 
installed before the corner posts were replaced and the bridge ‘re-builder’ used the 
new arches to hold the bridge up while he was replacing the 8 corner posts and 
scabbing on timber at different locations where leaks had allowed the water to rot the 
chords.” 

Existing Structural System 
Trusses – The length of truss bays between posts are not identical. See Figure 7. The 
spans between posts at the center of the bridge are unusually longer than the bays 
near both ends. Several hand-hewn posts remain in the trusses, but most members are 
sawn. Tie beams are dropped into slots at tops of posts and pinned. The outrigger 
ends of the tie beams bear rafter sills. See Figure 2. Knee braces are framed between 
the tie beams and posts. Horizontal x-bracing is alternately nailed and “let in” 
between the tie beams of each bent. Lower “needle” beams were added later to the 
posts, below the lower chords, suspended from the arches for supplemental support. 

Arches – The circular-sawn, nail-laminated arches are not “let in,” but are bolted to 
truss members – indicating that these members were not part of the original 
construction. The combined structure of trusses and arches was intended to carry the 
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live load, however the subsequent failures of both lower truss chords changed the 
distribution of the loading through the truss-arches in a dramatically visible way.  See 
Figure 3. 

/

Figure 2 – Assembly of truss posts 
and upper chords, tie beams, and 

rafter  sills 

Perhaps t he most interesting structural aspect of Ki
laminated arch is a “tied arch” rather than a two-hin
the arch is restrained by the bottom chord which is 
arch would bypass the bottom chord and bear direc
imparting a great deal of thrust.  Instead, struts wer
to seats in the abutment faces – similar to arch exte
carry much less force than arch extensions. This tie
hinged arch. Since the struts decayed at their abutm
forces from the arch directly into the abutment face
truss/arches stretched and were resisted by the abut
the substructures. 

Substructure - The truss bears on stone abutments. 
the abutments to bear the timber struts to transfer lo
lower chords to the substructures. See Figure 4. 

Joists / Floor – Another interesting aspect of the Ki
the floor joists that combines the purposes of transv
beams and under floor diagonal bracing into one sy
provide lateral bracing.  The floor joists form a latt
5x6s that bear on ledger blocks nailed to the inside 
floorboards are laid longitudinally and appear to ha

Sheathing – The bridge is clad with board and batte
deteriorated wood shingles on circular sawn nailers
fastened at the apex with wood pins.  A canted cap 
lower area of the inside of the trusses from traffic d
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History 
Kings Bridge has an unclear history. The date
and “Rebuilt 1906”.  Observations of the exist
research suggest different versions of history. 
constructed originally in the mid-1800’s with 
abandonment as a state highway structure was
single span timber bridge over Laurel Creek w
steel stringer bridge, 

From that time until 2002, Kings Bridge was p
local farming family – the Kings of Middlecre
retrofitted to serve as a livestock barn over the
agricultural use still exist on the bridge. The re
on the lower downstream chord where a “float
livestock from wandering up the creek in low 

Earlier Repair Interventions – If the bridge dat
then it appears that the bridge was almost enti
chords show signs of partial replacement and s
New replacement timber was mostly chestnut 
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Figure 6 – Interior “wainscot”(Note
retrofit rod and gates from previous 

“barn” use”) 
/

Figure 4 – Northern face of eastern 
abutment.  (Note the separation of the

wingwall face resulting from the 
horizontal thrust of the truss arches
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mnants of rubber tire hinges still exist 
ing fence” was hung to prevent 
flow periods. 

e of 1906 is correct for reconstruction, 
rely rebuilt at that time.  The lower 
ome later scab and plating repairs. 
on the interior / exterior siding and new 



oak for the planking.  The replacement posts were oak or possibly chestnut and 
chords were oak. If the retrofitted arches were not used to support the bridge in place 
while it was rebuilt, then the entire bridge was probably supported with major bracing 
from the creek bed. 

The bridge was probably stripped of all roofing and siding as well as plank flooring.  
The main exposed frame was then dismantled to a point where the major post and 
chord repairs could take place. Under this scenario nail-laminated oak arches with all 
contingent rods and blocks were installed after the major repairs.  The sheathing was 
then reapplied.  The good planks from the floor were flipped over and used.  The 
good exterior and interior sheathing was reversed and reused in combination with 
adequate and similar new wood.  A new roof was then installed on the entire bridge.  

All siding was nailed with “round” or wire nails.  The oak plank flooring was all 
flipped over, putting the worn side down, nailed off with round spikes and covered 
with another layer of newly sawn planks. The roof sheathing and all cedar shingles 
were all round nailed.  Wire nails are common from the last 10 years of the 19th 
Century. The interior wainscot boards were made from newly sawn chestnut and 
reused and flipped over pine boards.  The exterior siding showed the same usage 
pattern.  The entire shell of the bridge, as well as the floor decking, appears to be 
done at one time.  There was no evidence found that showed partial removal and 
replacements of the sheathing and flooring. 

Some repairs were made to the bridge following its complete rebuild.  These repairs 
occurred in the area of the failed chords and appeared to be temporary fixes to a 
major problem and not a solution.  These repairs included bolting 3"x10" oak planks 
to the lower chords.  The most recent repair appears to be the spiking of 3x10 oak 
planks to the posts and braces on both sides of the lower chord failure on the North 
(upstream) side of bridge. A series of retrofitted rods extend through upper chords, 
braces and posts on both trusses to help transfer the loads at the lower chord failures 
back through the trusses into the abutments. Most damage to primary frame appeared 
to be related to water damage from roof failures and decay continues during the 
rehabilitation design phase 

Arnold Graton offers this theory as to why the Kings Bridge has a collection of up 
and down, and circular sawn timbers: 

“It is possible that more than one person supplied the timber.  There were probably 
times of the year where a person could contribute time rather than dollars to the 
bridge project.  The Kings may have had access to the old fashioned up and down 
mill. To address the hand hewn members, most sawmills had 16' carriages.  To cut 
32' to 52' timber would require a carriage from a minimum of 24' with track twice the 
length of the timber plus 10' or so.  Therefore a 32' lower chord stick would require a 
mill track and shed to be approximately 74' long.  Over the last half century, I have 
run across a number of covered bridges that had sawn post and braces and hand 
hewn lower and upper chords.  The shorter timber was sawn in the mill and the long 
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timber, which would be hew logs, (hard to get to the mill), would be hewed out in the 
woods and delivered to the covered bridge site as timber 32' to as long as 52'.  This is 
one case that I remember.  So, the King's Covered Bridge could have been built in the 
same time frame as most covered bridges were built.” 

Conservancy Intervention – The Southern Alleghenies Conservancy (SAC) and the 
Somerset Conservation District (SCD) began to assist the Rockwood Area Historical 
Society in 1996 to secure $90,000 in State Department of Economic Development 
(DCED) funds to rehabilitate Kings Bridge.  At the time of SAC intervention the 
bridge was still owned by the King Family. 

The state funds were used to engineer and construct a temporary suspension system 
to stabilize Kings Bridge in place over Laurel Creek. DCF Engineering Inc (DCF) of 
Cary, N.C. and Arnold M. Graton Inc. of Ashland NH designed and constructed the 
temporary system in fall 2000.  State funds were also used to fund a comprehensive 
strategy that was developed by Simone Jaffe Collins Inc. Landscape Architecture of 
Berwyn, PA for SAC to secure the balance of $1M that was estimated to rehabilitate 
the entire bridge. 

In 2000 SAC began to execute the funding strategy with the assistance of PennDOT 
and local, state, and federal legislators. By 2003 the project had received 100% 
federal funding for rehabilitation though PennDOT under two FHWA programs – 
$340,000 from the National Covered Bridge Program and $595,000 from the 
Transportation Enhancements Program. During this period SAC also negotiated the 
donation of the Kings Bridge and one acre of land from the King Family into the 
SAC land trust program for rehabilitation and public use as a municipal park. When 
SAC completes the rehabilitation, Middlecreek Township will take ownership of 
Kings Bridge and maintain it as a public park and the structural “cousin” to the 
Township’s Barronvale Bridge located one mile upstream . 

Stabilization – A stabilization system of two queenpost trusses was designed by DCF 
to be placed to the exterior of the bridge.  Each truss bears on timber cribbing towers 
that rest on the stream banks below.  The system was designed and installed with the 
expectation to temporarily hold the bridge securely in place during the shoring, 
engineering, planning, and fundraising phase.  The inserted steel queenpost shoring 
system is inherently stable.  Steel wide flange “needle beams” were placed 
transversely through the bridge, and bear on the upper chords of the temporary 
queenpost trusses and are positioned to suspend the timber bridge from its upper 
chords. The downstream truss was critical at the time shoring was installed.  Only the 
bolts where the lower chord was repaired were preventing the bridge from collapsing 
into the creek.  The abutment walls provide critical support to the bridge and were not 
be disturbed. 

A subsequent “tuning up” of the trusses was performed by AMG for SAC in October 
2004. The bridge suspension was “plumbed up” and straightened.  This system was 
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originally envisioned to be in place for 2 to 3 years during the fundraising period.  
Winter 2004-5 will be the fifth season for the temporary system. 

Structural Documentation – DCF prepared CAD construction documents for the 
stabilization design that were used to map the existing conditions and actual 
dimensions of the bridge. See Figure 7. 

Figure 7 – CAD Drawings - Frame elevation (by DCF) 

Rehabilitation Design 

Investigation of Conditions 
As part of the SAC rehabilitation design contract, members of the SJC team convened 
on-site for two days in October 2004 to assess the conditions of Kings Bridge.  SJC 
and AMG assisted DCF as the project engineer of record, to map the structural 
dimensions of the bridge as well as “flag” visible locations of deterioration, and 
document former repairs.  Preliminary findings follow 

Structural Issues – Three issues that pose the greatest challenge to Kings Bridge 
rehabilitation result from water damage. 

• Lower chords - The King Family did a remarkable job maintaining the roof during 
its ownership, but years of insidious leaks ultimately resulted in failures of both 
lower chords. The breaches occurred in the corresponding bay on opposite ends of 
each truss.  The failures were recognized in time by the Kings and series of 
vernacular repairs including metal rods, wood splints and iron brackets were 
retrofitted to skillfully keep the bridge standing. 

• Truss Posts – Leaks in the areas of lower chord failures also resulted in damage to 
several truss posts and shouldered truss braces.  The joints in a covered bridge 
timbers are often the weakest points in the structure.  The head of two posts had 
failed in shear at the joints due to excessive new loading patterns after the lower 
chord failures and repairs were installed by the King Family. See Figure 5. 

• Arch Struts – These members are installed below the line of the lower chords and 
are not sheathed by the bridge siding – probably to avoid obstruction of the creek 
during flood levels.  These untreated heavy timbers have long since lost structural 
integrity where the hearts have decayed at the bearing seats on the stone abutments. 
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This failure essentially changed the original intent of the two-hinge laminated arch 
to function more as a tied arch. The arches are visibly deformed above the locations 
of lower chord failures, exhibiting the transfer of loads from the adjacent truss posts 
through the arch and back into the trusses and lower chords to the foundations. 

Nondestructive Evaluation – USDA Forest Service personnel from the FPL and WIT 
program performed a series of nondestructive evaluation tests on various bridge truss 
members that were identified as deteriorated or potentially deteriorated based upon a 
visual condition assessment. 

• Moisture Content – Measurements were performed with an (Delmhorst model RC­
1D) electrical-resistance type moisture meter and 76mm (3-in.) long insulated probe 
pins in accordance with ASTM D4444 (ASTM 2000) requirements.  At each 
identified location, data were collected at pin penetrations of 25, 51, and 76 mm (1, 
2, and 3-in.) into the bridge members.  All moisture content field data is to be 
corrected for temperature and species in accordance with Pfaff and Garrahan 1984. 

• Stress Wave – Measurements were performed with (Fakkop Microsecond Timer) 
stress wave timing equipment in accordance with established procedures (Ross and 
Others 1999).  At each identified location, the width of the member was measured 
along with the wave transmission time.  Calculated stress wave velocities (foot per 
micro-second) helped to identify potentially decayed locations in the bridge truss 
members. See Figure 8. 

• Resistance Drilling.  Measurements were performed with a micro-resistance drill 
(IML Resistograph model F400) that measures drill bit resistance that provides a 
good density profile of the wood member (Figure X) (Ross and Others 2004).  True 
scale density profile plots were used to characterize the extent of internal 
deterioration in the bridge truss members. See Figure 9. 

Preliminary NDE results of the truss members in the vicinity of Post no. 10 (South) 
are included in Figure 10 (Summary Table).  All adjusted moisture content 
measurements were less than 16 percent, except for test location 10S-g, which was 
slightly higher at 19 percent.  These results indicate that the truss members are 
currently drier than the threshold moisture content level which is required for decay.  
Stress wave velocities ranged from 180-220 ft/m-second and were near the threshold 
level for the presence internal deterioration.  

Several micro-drill resistance measurements reported consistently low wood density 
and confirmed the stress wave measurements.  A representative resistance plot shows 
relative density profile of both (inner & outer) top chord truss members at location 
10S-c. See Figure 11. Both truss members had a relative drilling resistance below 15 
percent, with the interface between members visible at approximately 7.5 inches 
drilling depth. 
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Figure 11. Resistance drill plot 513 (corresponding to test location 10S-c) The 
resistograph plot shows a typical low resistance at a suspected deteriorated location.
Figure 10   - Summary table of field data at location of post number 10 South 
(10S). a—refer to schematics for actual test locations; b— adjusted for temperature, not for wood 
species; c— see appendices for actual resistance drill plot; 
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Off-site Timber Testing 

• Species Testing – Small scale samples retrieved from the Kings Bridge were used to 
identify the species and provide a basis for determining engineering properties.  
This task is currently underway by FPL and WVU. 

• Strength Testing – Large scale samples of lower chord material at the failure 
location were removed under separate contract and delivered to WVU for testing.  
The load carrying capacity of the samples will be established by setting a load limit, 
within the elastic range, that corresponds to approximately 120-150% of the 
maximum design live load.  Failed floor joists were also collected and will be tested 
at WVU. 

In addition to the on-site and off-site investigations, a complete structural analysis 
will be made to understand how the bridge behaves in terms of stresses and 
deflections.  With this analytical information available, a final preservation plan will 
be developed.  The following section presents preliminary preservation options. 

Preservation Options 
The intent for Kings Bridge after rehabilitation is for non-vehicular trail use. This end 
use increases the options for rehabilitation. The SAC preservation goal – to retain the 
maximum existing fabric in Kings Bridge after rehabilitation – suggests that the 
priorities for preservation treatment are: (1) to retain / repair, (2) replace in kind, or 
(3) replace with alternative materials and mitigations. 

The rehabilitation of the bridge will be made using similar materials and technologies 
as similar as possible to the original construction.  Timber to match existing will be 
locally obtained if possible.  Through examination of the structure and rigorous 
engineering analysis, a rehabilitated bridge of known capacity will result that 
maximizes the amount of historic “fabric” (original materials, surfaces, etc.) that are 
retained.  Construction will follow The Secretary of the Interior's Standards for the 
Treatment of Historic Properties, utilizing traditional timber details. 
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